23

Nov

Overcome the barriers to automation

As appeared on Cutting Tool Engineering on 11/7/2021

By Anthony Fettig, CEO of UNISIG

At every stage of manufacturing, there is an opportunity for automation. Unfortunately, many manufactures often let perceived barriers keep them from implementing complete machine or process automation. With this mindset, they end up limiting their productivity by automating only one or two aspects of the process or not automating at all.

Conversely, those manufacturers that instead approach automation with an open mind and focus on breaking through barriers that could potentially prevent automation are those that are capable of automating as many stages of manufacturing as possible. These shops consider automation to be a key part of their enterprise-wide strategy, one that encompasses everything from sales, engineering and materials flow to actual machining operations and quality control.

When it comes to automation, most of the time should be spent getting all other manufacturing steps under control. That means making sure machines are robot ready; manufacturing process are robust and reliable to function automatically; and that there are quality checks in place to prevent issues from permeating to other operations within the process. Plus, while eliminating these barriers to automation, shops will often realize that doing so has as much of an impact on productivity as would simply adding a robot.

For one UNISIG customer, careful review and implementation of automation and process optimization resulted in about 150% production increase over previous manual operations without increasing feedrates.

The shop’s recently added automated gundrilling process simplifies completion of large orders with long delivery schedules. Most of the shop’s workflow involves long-term contracts and multi-month purchase orders for 1,000 or more parts. That streamlined workflow thanks to automation makes production planning easy because the company can establish shipping dates and work backward to create the build schedule.

There are opportunities to automate most elements of a company’s manufacturing environment. The impact of well-targeted automation solutions maximizes the overall benefits of process stability and consistency as well as increased output than does simply adding another robot in production. These opportunities are often overlooked – or worse, the lack of automation in less obvious areas deters the integration of further conventional automation.

Before machining a part, for instance, enterprise resource planning (ERP) systems, CAM software and even tools for simulating machines all contribute to automation at the machining stage. The ability to program from engineering model files without having to export from engineering CAD files or filtering through old revisions is often an added bonus, and a welcome quality-of-life improvement from today’s CAD/CAM users.

Through simulation, manufacturers can verify programs to avoid crashes as well as to optimize the machining plan and eliminate unexpected events that impact quality. In turn, this unleashes the true performance potential of modern machine tools that may have otherwise gone unused.  Bringing the entire machining process into the digital realm also creates the opportunity for a digital twin that can be stored as a record of the manufacturing process.

Digitally modeling more than the workpiece and tool, such as adding fixtures and machine components, creates new possibilities for improvement along with complete process optimization and further encourages the use of standard libraries beyond just cutting tools. Standardization of tool libraries that include more than dimensions, but also feed and speed tables by material type, for instance, eliminate the need for manually determining such parameters for every part application.

There are also a variety machine features that can contribute to a more automated workflow – including many things individuals wouldn’t ordinarily consider automation. Modular quick-change fixturing and off-line tool setting further automate and reduce setup time, for example. Likewise, in-process inspection cycles confirm part quality during production to ensure uninterrupted operations.

When considering the machine tool automation aspect,  an automation-ready design is critical to provide a solid foundation for process-wide automation. For deep hole drilling machines, that starts at the core of a machine’s design with its axis plan and spindle movements.

Other automation-ready machine aspects include automatic doors for automation access, communication capabilities in the controls and sensors, and other features and capabilities specifically made to interface with or supplement automation.

In the case of deep hole drilling systems, a shop may manually load a part, but the machine’s underlying design allows it to automatically lift and nest a part into a fixture, set the tool offsets, drill a hole and send it back to the nest for unloading – all with perfect accuracy and repeatability.

For many companies that compete against low-cost offshore suppliers, automation often means survival, but more importantly, it provides a sustainable path to growth and profitability.

Prior to implementing it however, shops must focus on and eliminate or correct any preconceived barriers to automation they may have. In doing so, automation becomes a process and enterprise-wide initiative, from the engineering department and the production floor all the way to the shop’s machine tools.

UNISIG's production cell integrates our UNE 2-spindle gundrilling machine and UNR 2-spindle reaming machine with robotic automation. The cell leads into our R-2A rifling machine for steady, repeatable rifle barrel blank manufacturing at high production.
06

Sep

Rifle Barrel Manufacturing Cell with Automation | Video

UNISIG’s production cell integrates our UNE 2-spindle gundrilling machine and UNR 2-spindle reaming machine with robotic automation. The cell leads into our R-2A rifling machine for steady, repeatable rifle barrel blank manufacturing at high production.

The cell includes automated tool handling and machine guarding. Effortless production is furthered with racking systems, inspection, and oil blowoff capabilities.

Continue reading“Rifle Barrel Manufacturing Cell with Automation | Video”

Match Grade Machine, a specialty manufacturer of standard and custom single shot rifle and pistol barrels, stands out in their industry for their exceptional accuracy and attention to detail, complimented with a proven record for fast delivery to customers' hands.
05

Apr

Taking Control of Barrel Blank Production | Case Study

Industry: Firearms

Customer Product: Specialty Rifle Barrels

UNISIG Solution: Firearms Industry Production Cell

rifled custom barrels
Match Grade Machine, a specialty manufacturer of standard and custom single shot rifle and pistol barrels, stands out in their industry for their exceptional accuracy and attention to detail, complimented with a proven record for fast delivery to customers’ hands. The reputation of their products, as well as their high level of customer service and responsiveness, is vital to their long standing success and brand integrity.

Image Credit: Match Grade Machine

Dylan Sip, owner of Match Grade, is always conscious of opportunities to improve his company and advance their balance of brand and product values. Being able to offer top quality barrels, at a competitive price point, with the fastest lead times to market is what has earned them their place in the market. Continue reading“Taking Control of Barrel Blank Production | Case Study”

For deep-hole drilling, part-handling might be the most visible automation element, but it’s not necessarily the most impactful. Often, it’s internal process automation that yields the most significant results even with a manually loaded drilling machine.
19

Dec

Deep-Hole Drilling Automation Is More Than Part Load/Unload

BY ANTHONY FETTIG, CEO — UNISIG DEEP HOLE DRILLING SYSTEMS

For deep-hole drilling, part-handling might be the most visible automation element, but it’s not necessarily the most impactful. Often, it’s internal process automation that yields the most significant results even with a manually loaded drilling machine.

When it comes to automating deep-hole drilling, there are challenges unique to the process itself. These include fixturing complexities — where maintaining alignment requires elements such as guide bushings and tool supports not present in a conventional lathe or milling machine — and part attributes such as length and weight.

Long parts mean a long drilling cycle time, and maintaining production rates often requires multi-spindle, deep-hole drilling systems. Unfortunately, stopping a two- or four-spindle machine means two or four spindles sit idle until the parts are loaded and unloaded. So, in these instances, the more parts in the machine at one time, the more automation can actually inhibit cycle time while the machine is running.

Solving this problem in multi-spindle machines requires internal automation to achieve the objectives of lean manufacturing and one-piece flow. In-machine loaders singulate processes so that even within a small four-piece batch you maintain one-piece flow. The operator or automation device puts in a part and takes a part out, and the machine does a bit of maneuvering inside to sequence those four parts in such a way as to minimize spindle downtime while maintaining upstream and downstream processes for one-piece flow. For instance, parts could be loaded onto a smart conveyor, indexed, and lifted into chucks for the drilling cycle before robotic unloading on the out-feed side so that there are no bottlenecks to a steady production flow.

Tool life management is another form of internal automation. Getting feedback to the machine enables the deep-hole drilling process to adapt or halt, if necessary, before tools and parts are damaged.

Tool life management is built into a machine’s control, and the machine senses torque thrust and coolant. Chip condition is usually the first indicator of wear, which would otherwise require an operator present to detect, so the machine actually monitors the process and can predict tools starting to wear and identify when they need to be changed. A tool life management system also can count distances drilled and the number of cycles, then prompt  a tool change at the appropriate time.

That kind of in-machine automation smooths the path for external automation. As the process builds, highly standardized options for robot-ready machines such as an automatic door, workpiece-present sensors and programmable workpiece fixturing makes it easier to add a robot at a later date. These robot-ready machines also create efficiencies before they’re fully automated. Even with manual loading, the automatic doors and programmable clamping make the process more efficient.

In UNISIG’s experience, an embedded reamer tool changer enables manufacturers to manage significant throughput increases, even with an operator. With this technology, operators can maintain the pace of production loading the machine, while eliminating the task of inserting reaming tools for each cycle. This allows the operator to redirect efforts towards tasks such as additional quality checks and off-machine setups.

Across every industry, manufacturers are working to meet growing customer demand in a globally competitive market.
20

Sep

Deep-Hole Drilling and Automation Make for Productive Work Cells

Across every industry, manufacturers are working to meet growing customer demand in a globally competitive market.

Despite a widening skills gap, by organizing advanced technology into highly optimized work cells, manufacturers are maximizing productivity through automation.

Specialized equipment, like a deep-hole drilling system, often is challenging to integrate, which quickly can create production schedule bottlenecks. To eliminate the risk, shops that perform deep-hole drilling should seek out OEMs that understand the needs of high-production manufacturers and have the capabilities to bring technology into the factories and work cells of the future.

Deep-hole drilling systems, which can produce holes that exceed a 20-1 depth-to-diameter ratio, are a unique class of manufacturing equipment because of the focused tasks they conduct. An increasing number of machining centers boast deep-hole drilling capabilities, but these machines simply cannot operate at needed speeds, particularly for parts that require exceptionally high accuracy. Manufacturers that must perform deep-hole drilling capable of rapid production and high throughput should instead select machines designed for the task.

Automating Holemaking

These shops increasingly opt for deep-hole drilling systems that also work with automation. In a typical deep-hole drilling work cell configuration, such as one for producing rifle receivers or automotive shafts, the equipment can use automation to time its cycle completion to mesh with other production processes. For straightforward automation, conveyors and pick-and-place robots move and position parts for deep-hole drilling with exacting repeatability and accuracy while automatic toolchangers, doors and inspection stations keep parts moving swiftly into, out of and around the cell.

Because deep-hole drilling tends to apply to long, cylindrically shaped parts, workpiece configuration eases or complicates some aspects of automating load-in and load-out cycles tied to drilling operations. Workholding axes, for example, can provide automatic part gripping with pneumatic or hydraulic chucks operated through advanced controls for deep-hole drilling systems. In this configuration, machines can pick up a part, drill it and set it back down on a conveyor or part collection area. In deep-hole drilling systems themselves, specialized designs also offer automatic chucking, while robot-tending systems can add further flexibility with end-of-arm tooling, workholding and measuring systems.

As the automation configuration grows more complicated, however, manufacturers require an OEM that can act as a collaborative partner to find available solutions or engineer individualized products for unique applications or production lines. Shops that depend on deep-hole drilling as part of a high-production environment should seek a partner that has a demonstrated record of working directly with manufacturers to modernize processes and create robust automated work cells.

Gundrilling Application

UNISIG, for instance, worked with a manufacturer of rifle barrel receivers to help it accommodate growing demand and relieve production bottlenecks. The manufacturer’s older gundrilling machines were replaced by a multiple-spindle machine, the UNI25HD. It had the power and controls necessary to apply indexable gundrilling tools, significantly improving feed rates.

To enable fast one-piece-flow manufacturing, UNISIG integrated the system via automation for in-feed, pick-and-place, conveyor loading and automatic clamping, which fed two lathes that turned the parts. The result was an effective work cell that produced more than 100 parts an hour, a dramatic financial and process improvement.

The viability of automated deep-hole drilling production can depend on tool life and part length. At extreme depths, for example, some parts require more than one set of inserts to produce a completed hole, and the high level of hardness of some workpiece materials causes rapid tool wear. To overcome this challenge, UNISIG programs its machines to detect wear and predict when a tool will reach its breaking point, allowing operators to prevent a failure that could stop the line.

For further process efficiency, deep-hole drilling machines should have either a CNC or programmable logic controller. Both can integrate with other control systems and interface with a controller in the work cell. Systems such as a fully automated barrel cell are capable of unmanned, lights-out production with efficient programming.

Deep-hole drilling equipment’s application-specific configurations suit the production of parts that necessitate techniques and processes that go beyond the easy capabilities of general-purpose equipment. In years past, many manufacturers thought of this kind of specialized equipment as old-fashioned and a drag on production. But with the right equipment—and a partner with the right engineering and applications expertise—deep-hole drilling in work cells can keep up with the productive factory environment that manufacturers need to succeed.