Integrated Automation: Video Spotlight

Automation in deep hole drilling machines goes far beyond just robots. Automated capabilities are commonly included in machines to empower manufacturers to achieve ideal production flows, to reduce manual part and tool handling, and to maintain superior accuracy standards in drilled workpieces.

Automation is commonly integrated into deep hole drilling machines, working in part with the entire system to enhance capabilities while providing a seamless and ergonomic experience for operators. UNISIG works with each customer’s application demands to create a solution that optimizes their production and specification goals, resulting in a machine system that brings confidence to their manufacturing.

William Cook is a UK manufacturer of track running gear for armored vehicles. Their relentless drive to engineer, test, and produce the best products in this category has propelled them to their position as a global industry leader.
03

Oct

Production Gundrilling of Track Pins | Case Study

Industry: Transportation

Customer Product: Military Track Pins

UNISIG Solution: UNI-25HD Multi Spindle Gundrilling Machine

Image credit: William Cook
William Cook is a UK manufacturer of track running gear for armored vehicles. Their relentless drive to engineer, test, and produce the best products in this category has propelled them to their position as a global industry leader. William Cook is the main supplier of vehicle tracks to the British Army, in addition to having their products on the majority of armored fighting vehicles worldwide.

These vehicle tracks include a key component – track pins – which are designed to endure intense wear and tear from large, fast moving vehicles on uneven terrain. Components are produced to be strong, lightweight, and durable – at enormous production volumes. The material used is challenging to machine, and the combination of design and production demands leaves no room for compromise.

Continue reading“Production Gundrilling of Track Pins | Case Study”

Like their peers in the manufacturing sector, many deep hole drilling machine OEMs rely on commercial off-the-shelf (COTS) controls or reuse systems from other machine tool platforms they produce.
01

Oct

Deep Hole Drilling Control

By Sean Hayes, Controls Engineer, UNISIG
Originally posted in Advanced Manufacturing

Like their peers in the manufacturing sector, many deep hole drilling machine OEMs rely on commercial off-the-shelf (COTS) controls or reuse systems from other machine tool platforms they produce. This approach is efficient but often fails to provide a user interface designed specifically for deep hole drilling machines. So some deep hole drilling machine OEMs have opted for custom controls that not only enable greater levels of accuracy but also allow for the optimization of the deep hole drilling process itself.

The process requires careful operator supervision, but a well-constructed control can easily display all pertinent data necessary to facilitate the real-time management of drilling performance. To truly optimize the process, controls must allow for fast and easy on-the-fly manipulation of the most important factors in deep hole drilling: thrust load and feedrates of the drill; the tool and work spindle torque; and the coolant pressure and flow.

For machines with COTS technology or a repurposed CNC platform, such changes to or manipulation of the program after starting a drill cycle is all but impossible. With controls designed for deep hole drilling, though, overriding the program is possible during operation and encouraged.

Deep hole drilling professionals are thrilled to be able to make on-the-fly changes to the speed and torque of the spindle, as well as the feedrate and thrust load of the drill. With this fine-grained control, operators can adjust the feedrate and spindle speed to address issues like chip management and the straightness of a hole. Coolant flow can then be changed to optimize chip evacuation for that application.

Additionally, today’s deep hole drilling control systems aid users in finding the balance between job speed and tool life. As they encounter various materials, shops can make carefully graduated changes that either reduce wear on the equipment and/or tool or that shorten cycle times. Alongside spindle torque and thrust load, the coolant type, flow and pressure can all significantly affect tool life.

While controls designed for deep hole drilling allow experienced operators to make on-the-fly parameter changes, the controls also reduce the learning curve for inexperienced operators: Modern controls let users generate programs by simply inputting part and tool parameters. If some of the data is unavailable, the controls feature tools that will calculate such factors as recommended spindle speeds for tool rotation and workpiece counter rotation based on the known data.

Likewise, operators can easily configure a new tool and its offset, import programs over an Ethernet connection and handle other functions through the innovative human machine interfaces (HMI) of today’s controls. Unlike previous generations of drilling machines, current HMI-based solutions present users with all of the data necessary to set up a deep hole drilling operation.

That same simplicity and ease of use makes these systems far more modular. Today’s deep hole drilling machines can easily be upgraded to become fully automated with the help of robots that can transfer materials to other stations. These systems can then easily integrate into cellular manufacturing settings.

Advanced deep hole drilling controls can now even assist manufacturers in protecting their investment with a suite of safety features and fail-safes. Software in the controls can alert operators when problems like dirty filters or metal chips clogging the tool threaten to cause significant damage if not corrected. The software can also keep track of how often tools are used, or when a machine is due for scheduled maintenance, so that shops can make any necessary repairs or replacements with the least amount of production downtime.

Fully integrating the control system with the drilling machine requires building them in tandem. An advanced control’s ability to monitor mechanical processes and provide precise feedback, for example, requires a high-efficiency, low-friction system designed around the control’s motion control objectives. Likewise, coolant pumping systems must have the intelligence to vary the process as operators override parameters, yet be low maintenance and robust for long life. Only machines built around such intelligent control systems, and vice versa, can offer operators the highest level of on-the-fly process visibility and management.

When the manufacturing engineering team at medical device manufacturer ConMed, needed to find a way to pull significant costs out of production, he saw an opportunity to bring bone drill holemaking in house
01

Sep

Drilling Down to the Smallest Diameters | Case Study

Industry: Medical

Customer Product: Surgical Tooling

UNISIG Solution: UNE6 Gundrilling Machine

drilled medical part being measured
When the manufacturing engineering team at an international surgical equipment manufacturer needed to find a way to pull significant costs out of production, they saw an opportunity to bring bone drill holemaking in house. The parts, however, presented a significant challenge, with small diameters, thin part walls, and approaching depth-to-diameter hole ratios of 100:1. The department manager and his team weren’t sure that gundrilling could hold their required tolerances and give them the control of accuracy that they needed. Continue reading“Drilling Down to the Smallest Diameters | Case Study”

UNISIG's CEO Anthony Fettig was featured on advancedmanufacturing.org , discussing high-feed gundrilling, and the relationship between deep hole drilling systems and the tooling technology that is available.
09

May

The Hole Productivity Package – Advanced Manufacturing Feature

UNISIG’s CEO Anthony Fettig was featured on advancedmanufacturing.org, discussing high-feed gundrilling, and the relationship between deep hole drilling systems and the tooling technology that is available. Indexable-insert gundrill tools can triple feed rates, and are ideal for high-production environments in appropriate hole diameter ranges, allowing manufacturers to modernize their production flow and update capabilities.

Until recently, several types of tooling for deep-hole-drilling operations were considered specialty tools—ones that few cutting tool OEMs offered and even fewer actually supported. Today, many of those tools, such as indexable–insert tools for gundrills, are now readily available as standards and come with effective application support. All of which allows shops to easily implement such tooling and reap the deep-hole-drilling benefits of doing so.

Indexable-insert tooling triples drilling feed rates over those of conventional tools to maximize output. However, to actually run these tools to their full potential, deep-hole-drilling systems must now also generate three times as much power, torque and thrust as well as have the rigidity and stiffness to prevent any vibration.Fortunately though, the higher feed rates of indexable-insert tooling translates into increased output per spindle on deep-hole-drilling machines. That is, a machine using these innovative tools can drill the same number of parts—maintain a certain level of output—but with half the amount of spindles. Consider a production output level that would require 12 to 16 deep-hole-drilling spindles equipped with conventional tools. Indexable-insert tooling allows a shop to achieve that same level of output with only four spindles.

Such productive dedicated deep hole drilling systems mean that process planners/engineers can rethink their production cell layouts for improved cost-effectiveness without sacrificing output. Four-spindle gundrill machines, for example, take up approximately the same footprint as a large lathe. So, instead of four lathes, a shop can put in one gundrill machine and save 75% of the space while still getting the same level of output.

Highly productive gundrills need automation for maximized efficiency—not only external automation but internal automation as well. On its own, a single external robot is unable to load enough parts to keep all four spindles running. Instead, the external robot, or an operator, feeds parts to an internal loader inside the gundrill that then moves parts throughout the machine. This internal integral loader is an indexing “smart” conveyor that distributes the parts where needed.

Deep-hole-drilling process control and tool life management is even more critical for the high-performance machines that run indexable-insert drills, not only to keep operations running smoothly, but also to stop the process in the event of a problem before tool damage occurs. So those deep-hole-drilling system OEMs, such as UNISIG, that have always incorporated, in one form or another, process control and tool life management systems into their deep-hole-drilling technologies are now leaps and bounds ahead of those that have failed to do so.

Advancements in automation combined with the process control capabilities of deep-hole-drilling systems streamline their incorporation into production cells alongside conventional machining centers and other systems.

While it’s possible to perform certain deep-hole-drilling operations on machining centers and even be relatively productive, the deeper the required hole, the more the operation mechanically taxes the machine tool and diminishes its output. All of which leads to increased maintenance and higher tool expenditures.

This strategy also forces shops to add more machining centers to keep pace in the event of any surges in production demand. Conversely, the alternative is to instead integrate a deep-hole-rilling system that would relieve the machining centers of that operation. The cell’s robot could move parts from the machining centers to the deep-hole-drilling system.

Today’s deep-hole -rilling machine OEMs must always stay ahead of the curve in terms of tooling, then modify and engineer their machines accordingly to capitalize on any new technology. Doing so ensures that deep-hole-drilling systems continue to grow in capability and in application versatility to give shops further incentive to rethink the deep-hole-drilling process and how it could benefit their production operations.

Anthony Fettig, UNISIG CEO discusses deep hole drilling tooling